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Introduction (1)

Engineered systems such as:

� electricity / water distributions systems

� structural systems

are complex systems in the sense that

� they include geographically distributed and/or functionally interrelated 
components

� which through their connections with other components provide the desired 
functionality of the system expressed in terms of one or more attributes

� Different levels of analyses provided by different experts are required

Performance of the system
(requirements in terms of attributes)

The way the components are 
interconnected to provide the 
functionalities of the system

Reliabilities of components 

1
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Introduction (2)

Component level
(component failure modes)

System level
(system failure modes)

Consequences

Personnel

Environment

Asset

Component level System level 

Checks of performance of the system

Optimisation of the target 
reliabilities of components

2

3

4 Component approach is relevant because:

► in general, what are effectively designed are components 

► maintenance of a system usually addresses the components of the system

but:

► system performance is the direct concern

FMECA : Failure Mode, Effects and Criticality Analysis 
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Introduction (3)

► Need of a hierarchical modelling of complex engineered system s which 
integrates the different levels of analysis

► If performances of the system are expressed in terms of acceptable risks 
(Personnel, Environment, Asset), then the hierarchical model can be used 
for risk assessment of complex systems

► Example is a FPSO (Floating Production Storage and Offloading) unit which 
constitutes a typical complex system. In the examples the ship hull structure 
is modelled and analysed as a system of sub-systems and risk evaluation of 
the hull is performed with regard to fatigue deterioration of welded 
connections and corrosion.
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Examples of FPSO
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FPSO Structure: General Arrangement – Typical sectio n
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To 3.0  m Below 
Tank Top

Deck

Sheerstrake

Bottom & BilgeKeel

Long.bhd

Long.bhd

Hopper

Inner Bottom

Long. GirdersLong stiff.

Side shell

Long bhd stiff

Inner skin

Stringer

Deck trans Web 
/ Face plate

Long stiff. Web plate

Face plate

Internals in upper 
portion of  WBT

Long stiff. 

FPSO Hull Structure : typical components
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Shipbuilding

Fatigue life analysis of 
hopper knuckles

FEM model from VeriSTAR Hull

FPSO Hull Structure : Shipbuilding and engineered calc ulations
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► components/(sub-)structures are interrelated:

� Stiffeners, plates, welded joints

� Stiffened panels, boundaries

� Tanks

► different levels of analyses are required such as:

� Yielding, buckling, fatigue, fracture and corrosion of materials / components

� System structural analysis

� Consequence analysis in terms of Personnel, Environment and Asset.

Hull Structure analysed as a set of interrelated compo nents /  sub-
structures
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Given RAC at the system level

Pf calculated at the component level

RAC at the 
component level 
(maximum value 

of Pf)

RAC at the 
component level 
(maximum value 

of Pf)

Risk indicator 
calculated at the 

system level

Risk indicator 
calculated at the 

system level

RAC 
allocation

Expansion via 
Hierarchical 
model

Method 1
(component level)

Method 2
(system level)
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Hull analysed at component level or system level

2 approaches

�Constrained 
reliabilities

� Unconstrained 
reliabilities
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► A Bayesian Network is composed of:

� A set of variables/events (the “nodes”)

� A set of directed edges - or connections – (the “arrows”) between the variables/events 
which indicate dependencies, i.e. causal connections. 

► The Bayesian Network is a graphical representation of the probabilistic structure of the 
variables (defined by the “joint probability density function ” of the variables)

► Each variable/event may have a countable or uncountable set of mutually exclusive states. 

► The variables/events together with the directed edges form a directed a-cyclic graph
(DAG)

► To each variable/event with parents B, C, D,.., there is assigned a conditional probability 
structure P(A/B,C,D,..). The structure is defined by the CPT (Conditional Probability 
Tables)

► In case the variable/event A has no parents, the conditional probability structure reduces to 
the unconditional probability of A, i.e. P(A)

► The Bayesian Network can provide usual items which refer to probability theory as e.g. 
expected values, conditional probabilities,…

► Object-oriented Bayesian probabilistic network is useful when a phenomenon has many 
identical probabilistic (sub-) structures.

Bayesian Networks B C D

A

parent nodes 
of A: pa(A)

child node
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Bayesian Networks : example

0.990.01T (true)

0.60.4F (false)

F (false)T (true)rain

sprinkler

0.8F (false)

0.2T (true)

rain

0.990.80.90T

0.010.20.11FGrass 
wet

TFTFsprinkler

TFrain

Two events could cause grass to be wet:

� The sprinkler is on

� It’s raining

The rain has a direct effect on the use of the sprinkler (when it rains, the sprinkler is usually 
not turned on)

The joint probability density function is, 
according to the “chain rule”,:

P(G,S,R) = P(G/S,R) x P(S/R) x P(R)

CPT table for grass

CPT table for sprinkler
Unconditional 
probabilities

Sprinkler

S Rain

R

Grass wet

G
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Bayesian Networks : example (continued)

P(G,S,R) = P(G/S,R) x P(S/R) x P(R)

1) Joint distribution

P(T,T,T) = 0.2 x 0.01 x 0.99 = 0.00198

P(F,T,T) = 0.2 x 0.01 x 0.01 = 0.00002

P(T,F,T) = 0.2 x 0.99 x 0.80 = 0.15840

P(F,F,T) = 0.2 x 0.99 x 0.20 = 0.03960

P(T,T,F) = 0.8 x 0.40 x 0.90 = 0.28800

P(F,T,F) = 0.8 x 0.40 x 0.10 = 0.03200

P(T,F,F) = 0.8 x 0.60 x 0.00 = 0.00000

P(F,F,F) = 0.8 x 0.60 x 1.00 = 0.48000

2) Marginal distributions

P(G=F) = 0.55162

P(G=T) = 0.44838

P(R=F) = 0.8

P(R=T) = 0.2

P(S=F) = 0.678

P(S=T) = 0.322 

3) Conditional distributions

P(R=T/G=T)

= (0.00198 + 0.1584) / 0.44838

= 0.357688
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� Inference: conclusion drawn from 
observations/data.

� Bayesian framework allows 
inference using the mathematical rules 
of probability

� Inference engines have been 
developed that makes the calculation 
more tractable

� The process of construction of the 
inference engine is called “compiling”
the model 

Sprinkler

S Rain

R

Grass wet

G

Sprinkler

S Rain

R

Grass wet

G
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► Manipulating the Bayesian Network structure

► Very efficient so-called inference engines have been developed that makes the 
calculation more tractable than working directly on the initial Bayesian Network

Bayesian Networks : Inference engines

the bayesian network the moral network

the triangulated graph the jonction tree

� The triangulation 
phase is in general a very 
crucial phase as it has a 
significant influence on 
the size of the compiled 
network and thus on the 
calculation time

� References exist which 
describe procedures for 
finding good 
approximations to the 
optimal triangulation of a 
graph 
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► Component level

A1 A2 An

B
C

Hierarchical modeling of hull by use of Bayesian proba bilistic network

► Sub-structure level

X1 X2 X3 X4

Y

Z
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► Structure level

D1 D2 Dm

E

F U

G

Hierarchical modeling by use of Bayesian probabilistic  network

B C D

A

B C D

A

In Bayesian Networks for Hull 
convergent networks are used
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Constrained optimization of components reliabilities in 
complex systems

The requirements to the system performance are disaggregated into reliability 
performance requirements for the components

See “Constrained optimisation of components reliabilities in complex systems”, Kazuyoshi Nishijima, Marc 

A. Maes, Jean Goyet and Michael Havbro Faber, Structural Safety 31 (2009), pages 168-178
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On Bayesian probabilistic networks:

expected total cost is written as:

where xi is design variable for components, e.g. component reliability.

acceptance criteria for system performance are written as:

1 2( , ,..., )Nu f x x x=

1 2( , ,..., )j N jg x x x c≤

Optimization of component reliability can be reduced to be a standard constrained 
optimization problem:

minimize

such that

� solving the optimization problem with commonly available techniques

1 2( , ,..., )Nu f x x x=

1 2( , ,..., )j N jg x x x c≤ , ( 1, 2,..., )j M=

Formulation of the optimisation problem Example 1
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Optimization of reliability of welded joints in ship hull structure

Acceptance criterion: probability of failure of ship hull < 10-3/yr

Objective function : expected total cost

Hierarchical structure of the ship hull:

Hierarchical modelling Example 1
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Corresponding BPN’s:

Example 1
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Conditional probability tables

Example 1
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Objective function:

[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10] 

1 2 10( , ,..., )u f x x x=

Example 1
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RBI Hull – Quantitative Methodology and cost calculati on
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• minimize E[CT] = min Σ C(Si) P(Si)

Example 1
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Constraints:

[x1 x2 x3 x4 x5             x6 x7 x8        x9 x10]

1 2 10( , ,..., )g x x x c≤

Example 1
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Results Example 1
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Checks of performances at system level 
with unconstrained components reliabilities

See: “Risk Assessment in Engineering – Principles, System Representation & Risk Criteria, Annex, Example : 
Risk Based Inspection of Offshore Structures”, JCSS (Joint Committee on Structural Safety), J. Goyet, Antoine 
Rouhan and Fernando Castanheira (Bureau Veritas), Bruno Farias (Petrobras), Michael Faber and Kazuyoshi 
Nishijima (ETH), 15th of April 2010, may be downloaded on the JCSS Website
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Example : Risk Based Inspection of FPSO Hull struct ure

► Risk Analysis may be used in inspection planning

� either as alternative to usual prescriptive rules
� or as complement to these rules

► Risk Analysis is performed using

� a hierarchical model of the hull
� Bayesian Networks fitted to the hierarchical model

Slop tanks

WBT

WBT

Separation 
tank

Separation 
tank

C.O.T

C.O.T

C.O.T

C.O.T

Center C.O.T Center C.O.T

turret void space
WBT

WBT

Separation 
tank

Separation 
tank

C.O.T C.O.T C.O.T

C.O.T C.O.T C.O.T

Center C.O.TCenter C.O.T C.O.T

Slice 1

Slice 13
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RBI approach at system level - steps

� Step 1: Risk Acceptance Criteria

� Step 2: Cargo area subdivision and definition of inspectio n plans
� Inspection plans are pre-defined for the unit, for example a set of inspection times T1, T2, T3

are established for each type of tanks (ballasts, crude oil tanks,..)   

� Step 3: Annual damage state of the unit taking into accou nt:
� degradation mechanisms (general corrosion, pitting, fatigue)
� inspection planning
� mitigation strategy

� Step 4: Risk Analysis of the unit on an annual basis:
� using damage states determined in step 3
� using Bayesian Probabilistic Networks (BPN) for structural and explosion analyses
� taking into account all transverse sections of the unit

� Step 5: Check risk acceptance criteria annually for Personne l and 
Environment

� Step 5: Optimisation (Economical criteria)
� Optimisation is performed over the service life (summation over the years) 
� Alternative inspection plans are compared (the optimal one is selected)
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Inspection plan n°i

YES

NO

Inspection plan 
n°i deleted

Utility function for the 
inspection plan n°i : UF(i)

Select optimal inspection plan (n°k)
UF(k) = max UF(i)

Risk Acceptance
Criteria satisfied ?

Step 5: Optimisation (Economic criteria)

� The utility function UF in 
this example is the total 
expected cost associated 
to a given inspection plan. 

� This total expected cost 
includes:

o the cost of inspection,

o the cost of repair

o and the cost of failure
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Risk checking at system level : Principle of the BPN

The Bayesian Probabilistic Network (BPN) is intended to:

� Calculate the consequences of structural component failures in terms of loss of lives, 
environment and economics.

� Check the Risk Acceptance Criteria (loss of lives, environment) and

� Calculate the total expected cost associated to each inspection plan and select the optimal 
one.

The hull is modelled using a hierarchical model . This hierarchical model allows for 
determining event scenarios which start at the lowest level (initial event, defined at 
component level) and go trough the hierarchical model up to the highest level (terminal event, 
dealing with the hull as a whole which is analysed in terms of final consequences: loss of lives, 
environment and economics).

The BPN performs its calculations via the hierarchical model. Input data are:

o the hierarchical model itself, which takes into account naval architecture and hull constructive 
aspects

o pure and conditional probabilities along event scenarios

o consequences associated with terminal events (loss of lives, environment and economics).

:Therefore, three steps are included in the BPN construction: Event Scenarios Analysis, 
definition of the Hierarchical Model and construction of the BPN itself, i.e. to join the 
hierarchical model with all involved probabilities (pure and conditional) and final consequences.
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Plating
Secondary
stiffeners

Web 
frames

Deck 
panel

Deck zone
( wing tank)

Plating
Secondary
stiffeners
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frames

Deck 
panel

Deck zone
(wing tank)

Deck zone
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Deck Zone for transversal section

Deck zone

Bottom zone
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•Deck zone •Neutral•axis zone •Bottom•zone•Deck zone •Neutral•axis zone •Bottom•zone

2 3
654

1
7

Hierarchical model for hull (cargo region) - 1 -
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Plating

Neutral axis zone
(longitudinal bulkhead P)

Secondary
stiffeners

Web 
frames

corrosion

corrosioncorrosioncracking fatigue fatigue

Neutral axis zone
(side shell P)
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Neutral axis zone
(for the slice)

Strength ReductionLeak

Side shell
panel

Tank Explosion

utility

9 arrows coming from all plates of the tank
• Side shell plating
• Shear strake plating
• Deck plating
• Bottom plating
• Longitudinal BHD plating
• Longitudinal BHD plating lower strake
• Longitudinal BHD plate upper
• AFT transv BHD plating
• FORE transv BHD plating

Others

Deck zone
(for the slice)

Bottom zone
(for the slice)

Slice Failure (=Hull Failure)Hull FailureTank Explosion

Tank Explosion

Tank Explosion

utility

utility

Hierarchical

Model for Risk

Assessment

Hierarchical model for hull (cargo region) - 2 -
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Hierarchical model for hull (cargo region) – 3 -
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Hierarchical model for hull (cargo region) - 4 -

Plating Stiffeners Web Frames

Panel

Panel

Deck Zone

Hull Collapse

Bottom Zone Neutral Zone

Lowest Levels

Highest 
Levels
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Hierarchical model for hull (cargo region) - 5 -

Plating Stiffeners Web Frames

Panel

Panel

Deck Zone

Hull Collapse

Bottom Zone Neutral Zone

Lowest Levels

Highest Levels

Annual Probability of 
hull collapse P f,System

Consequences 
� Personnel ( Loss of lives)

� Environment
� Asset 

a) CPT for 
merging plating
and stiffeners

c) CPT at deck, neutral
axis and bottom zones

b) CPT for 
merging
stiffened
panels and 
web frames
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Pitting and/or cracking in the platingLeakage through the plating

Strength reduction of the structural zones 
(bottom, neutral and/or deck) for each 

hull slice (total of 13 slices)
Hull Collapse

Lowest level

Strength reduction of the reinforced panels 
within each zone

Strength reduction of the structural zones 
(bottom, neutral and deck) for each hull 

slice (total of 13 slices)

Strength reduction of bottom reinforced 
panel (plating + stiffeners) and/or frames

Strength reduction of bottom reinforced panel 
(plating + stiffeners + frames)

Strength reduction of plating and/or 
stiffeners

Strength reduction of reinforced panel (plating 
+ stiffeners)

Intermediate 
level

Fatigue and/or general corrosionStrength reduction of bottom frames

Fatigue and/or general corrosionStrength reduction of stiffeners

Cracking and/or general corrosionStrength reduction of platingHighest level

Fatigue in the stiffeners
Cracking in the plating 

(through cracks)

Due to:Gives the Conditional Probabilities to Have:

CPT : Conditional Probability Tables derived from 
expert knowledge or FEM calculations
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The complete BPN for a particular slice of the hull
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lowest level of the BPN (Side shell)
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Annual Risk assessment

For each year of the service life (i=1, NA), the process is as follows:

run the Structural integrity BPN slice per slice (see figure 1 for the definition of slices)

run the Explosion BPN

Items of importance are:

The expected utility for Personnel                         

The expected utility for environment

The expected cost for economics

Formulation 
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Checking of acceptance criteria (on an annual 
basis):

For personnel

UP(i) <  RACP,annual /  i=1, NA

Pour environment

UE(i) < RACE,annual /  i=1, NA

Optimisation

Utility function for economics is calculated for each alternative inspection plan by summation 
over the service life:

(4)

Utility for economics in (4) has now to include cost of inspection and cost of repair. So (3) is 
written as:

(5)

The optimal plan is the plan which minimises the utility function UA(i):

(6)

Where NI is the number of inspection plans under investigation.
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(for the slice)
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Slice Failure (=Hull Failure)Hull FailureTank Explosion

Tank Explosion

Tank Explosion

Plating
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idem
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Tank Explosion

utility

9 arrows coming from all plates of the tank
• Side shell plating
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• Deck plating
• Bottom plating
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Others

Deck zone
(for the slice)

Bottom zone
(for the slice)

Slice Failure (=Hull Failure)Hull FailureTank Explosion

Tank Explosion

Tank Explosion

Formulation (continued) 
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Analysis and results

► Step 1 - Risk Acceptance criteria at system level are derived from Risk 
Matrices from the owner (for personnel it was set to 8 x 10-5 loss of lives per 
year)

► Step 2 - Hull area subdivision and definition of inspection plans

� 4 groups of tanks: ballast tanks, separation tanks, center tanks, other wing 
tanks

� 5 types of inspection plans (given below in terms of years of inspection)

o type 1: 4, 6, 9, 11, 14

o type 2: 4, 7, 10, 13

o type 3: 4, 8, 13

o type 4: 4, 9, 14

o type 5: 4, 10

� Each group of tank may have one of the 5 types of inspection: 625 potential 
inspection plans 
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► Step 3 – Annual damage state of the 
unit taking into account

� Degradation mechanisms (fatigue, 
general corrosion, pitting)

� Inspection plan

� Surveys findings / mitigation strategy

� Input data (in the BPN’s) for the annual 
damage state: 13 x 107 = 1391 
components (probabilities of failure)

► Step 4 - Risk Analysis of the unit on 
an annual basis

� Risk Analysis performed for the 625 
potential inspection plans

► Step 5 – Optimisation according to 
formulation

Analysis and results (continued)
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