

25 y 26 de noviembre de 2015. Bilbao

ESTUDIO COMPARATIVO DE LAS MEDIDAS DE FIABILIDAD Y COSTES DE DOS MODELOS APLICADOS A UN MISMO CONJUNTO DE DATOS

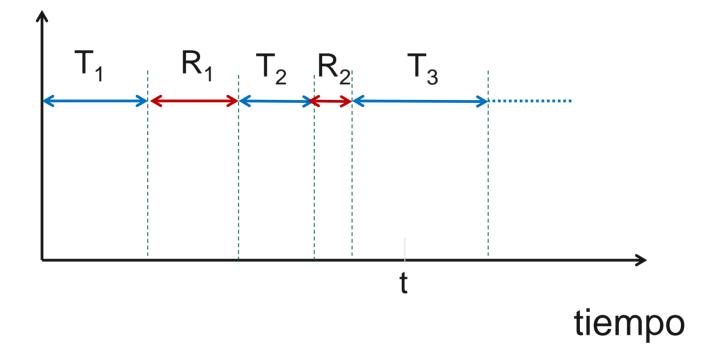
Rafael Pérez Ocón

Catedrático de Universidad

Delia Montoro Cazorla

Catedrático de Universidad

Universidad de Granada



PRESENTACIÓN

Se dispone de datos de tiempos sucesivos de fallo y reparación de 292 dispositivos .

El diagrama de estos tiempos es el que sigue:

DATOS DE LA MUESTRA

La muestra se obtiene de un total de 926 dispositivos iniciales.

Se seleccionan:

Los que fallan más de 12 veces en 2 años → total: 405

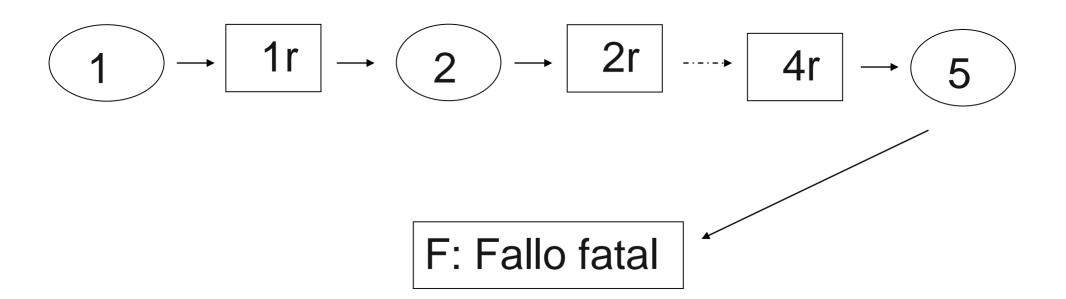
De entre ellos los que fallan entre 6 y 12 veces el primer año \rightarrow 292 (72,1%)

Se estudian solo los 5 primeros tiempos de fallo

OBJETIVO DEL ESTUDIO

- 1. Consideramos dos clases de distribuciones
 - a) Exponencial
 - b) Tipo-fase
- 2. Se ajustan estas distribuciones a los tiempos operativos y de reparación
- 3. Aplicamos un modelo tomando cada una de estas como base (Tiempos operativos y de reparación)
- 4. Se calculan las medidas de rendimiento para cada uno (fiabilidad, disponibilidad, costes medios)
- 5. Se comparan los valores obtenidos

DEFINICIONES


La fiabilidad tipo-fase es de la forma $R(t) = \alpha exp(Tt)e, \quad t \ge 0$

La fiabilidad exponencial es de la forma $R(t) = \exp(\lambda t)e, \quad t \ge 0$

 λ es un parámetro T es una matriz α es un vector fila (inicial) e es un vector columna de unos

DIAGRAMA DE TRANSICIONES

Estados operativos $U = \{1, 2, 3, 4, 5\}$

Estados de reparación $D = \{1, 2, 3, 4\}$

EL MODELO

¿Qué modelo aplicar?

El modelo Markoviano 1

Ventajas:

- 1. Es aplicable a los dos casos (exponencial y tipo-fase)
- 2. Es de los más avanzados en fiabilidad1
- 3. Presenta las magnitudes de interés (disponibilidad, fiabilidad, etc) en forma algebraica

DIFERENCIAS DE APLICACIÓN

¿Qué diferencias hay en la aplicación del modelo?

Diferencias:

- 1. En el caso exponencial el proceso de Markov es unidimensional
- 2. En el caso tipo-fase el proceso de Markov es multidimensional
- ¡¡¡Pero las expresiones son las mismas!!!

VARIABLES DEL MODELO

¿Cómo se ajusta un modelo Markoviano a un conjunto de datos?

Se ajustan las distribuciones designadas (exp y PH) a los tiempos operativos

y a los tiempos de reparación

APLICANDO EL MODELO EXPONENCIAL

Se ajustan a los datos observados de TF_i, TR_j, distribuciones exponenciales.

Este es un procedimiento usual en Estadística.

- 1. Se supone que los datos de TF_i (RT_j) siguen distribuciones exponenciales con parámetros λ_i (μ_i)
- 2. Se estiman estos parámetros
- Se comparan las distribuciones estimadas con las distribuciones empíricas construidas a partir de los datos.
- 4. Se mide la diferencia (test de ajuste)

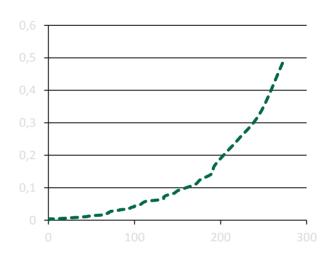
RESULTADOS

El test de ajuste rechaza la bondad del mismo al 95% en todos los tiempos operativos, excepto TF₂.

El test de ajuste rechaza todos los tiempos de reparación estimados.

Consecuencia:

El modelo exponencial que se aplique con estas distribuciones no es fiable.



COMENTARIOS

Las siguientes gráficas son las razones de fallo empíricas de los dos primeros tiempos de fallo. Si los datos fueran exponenciales estas deberían ser constantes.

Es claro que el ajuste no es bueno.

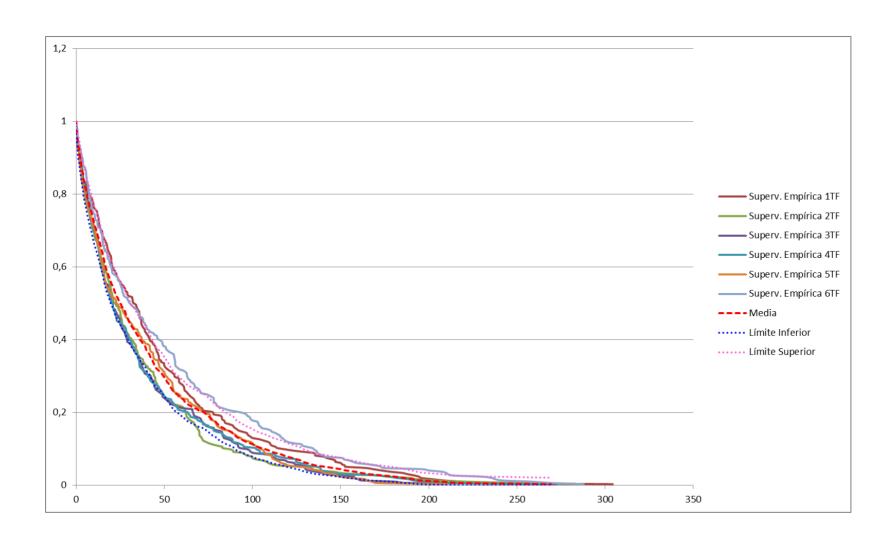
APLICANDO EL MODELO TIPO-FASE

Se ajustan a los datos observados de TF_i, TR_j, distribuciones tipo-fase.

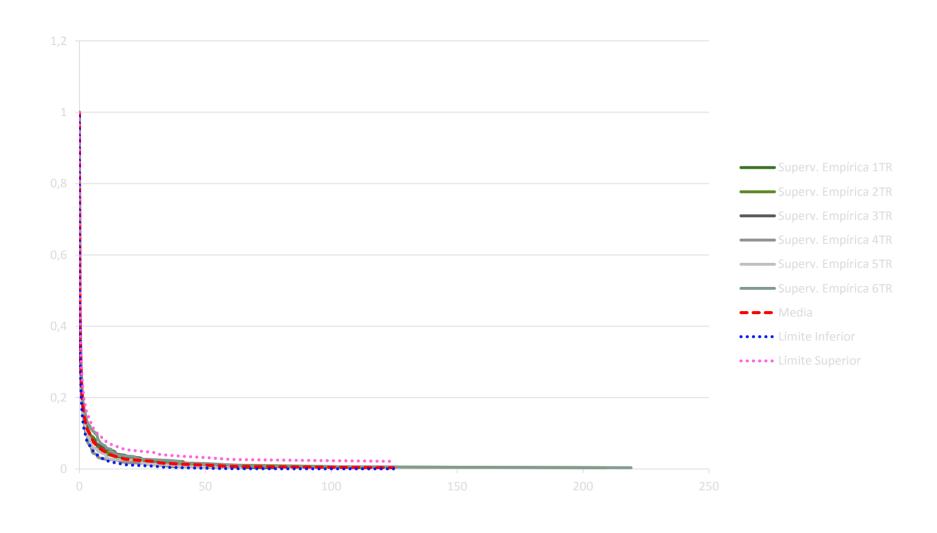
El ajuste se hace considerando el orden de las matrices por el investigador.

Normalmente se inicia el ajuste considerando matrices de orden 2.

Si se ajustan ya tenemos la primera parte resuelta.


Si no, se aplica el procedimiento con matrices de orden 3, y así hasta que se ajuste.

Es un procedimiento más versátil.


GRÁFICAS EMPÍRICAS DE TF;

GRÁFICAS EMPÍRICAS DE TR_i

RESULTADOS

El test de ajuste acepta la bondad del mismo al 95% en todos los tiempos operativos (orden 6).

El test de ajuste no rechaza los tiempos de reparación estimados al 95% (orden 6).

Consecuencia:

Este modelo es más fiable que el exponencial.

EL GENERADOR

- El conjunto de estados es E = {1, 1r, 2,..., 4r, 5}
- Se elimina el estado F de fallo fatal.
- El proceso de Markov se denota
 X(t) = estado ocupado en el tiempo t
- El generador está formado por las razones de cambio

$$Q = (q_{ij})$$

EL MODELO EXPONENCIAL

INTERPRETACIÓN

- El elemento q_{ij} denota la razón de cambio desde el estado i al estado j.
- Por ejemplo,

 $q_{2,2r}$ es la razón λ_2 que ha sido estimada

 $q_{2r,3}$ es la razón μ_2 que ha sido estimada

 Los elementos del generador son las razones de cambio ordenadas.

GENERADOR POR BLOQUES

 Por razones de cálculo se agrupan los estados y con ellos el generador se reorganiza

$$E = U \cup D$$

El generador se reorganiza de la forma

$$Q = (q_{ij}) = \begin{pmatrix} Q_{UU} & Q_{UD} \\ Q_{DU} & Q_{DD} \end{pmatrix}$$

PROBABILIDADES BÁSICAS

- El estado inicial es el 1.
- El generador (matriz) Q permite calcular las probabilidades de transición:

$$P(t) = (p_{ij}(t)) = \exp(Qt)$$
$$P_{UU}(t) = \exp(Q_{UU}t)$$

- Las probabilidades que hay que calcular son $p_{1j}(t)$
- = P{ocupar el estado j en el tiempo t dado que inicialmente ocupa el estado 1}

MEDIDAS DE FIABILIDAD

La fiabilidad es el tiempo de fallo.

La disponibilidad en un intervalo (s,t) es de la forma

$$A(s,t) = \pi e^{Qs} M_U P_{UU}(t-s) E_U$$

$$M_U = \begin{pmatrix} I_{5 \times 5} \\ 0_{4 \times 5} \end{pmatrix}$$
 $E_U = (1_9)$ π vector inicial (orden 9)

La disponibilidad en el tiempo t es $A(t) = \pi e^{Qs} M_U E_U$

MEDIDAS DE FIABILIDAD MODELO TIPO-FASE

La fiabilidad es el tiempo de fallo.

La disponibilidad en un intervalo (s,t) es de la forma

$$A(s,t) = \pi e^{Qs} M_U P_{UU}(t-s) E_U$$

$$M_U = \begin{pmatrix} I_{30\times30} \\ 0_{24\times30} \end{pmatrix}$$
 $E_U = (1_{24})$ π vector inicial (orden 54)

La disponibilidad en el tiempo t es $A(t) = \pi e^{Qs} M_U E_U$

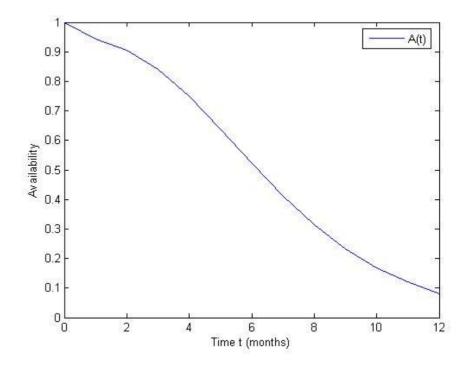
TABLAS COMPARATIVAS: DISPONIBILIDAD Y FIABILIDAD

Disponibilidad en el tiempo t (días)

t	30	60	120	150	180	240	300	360
Ехр	0.952	0.938	0.986	0.689	0.542	0.297	0.139	0.059
PH	0.943	0.904	0.841	0.637	0.520	0.313	0.170	0.080

Fiabilidad

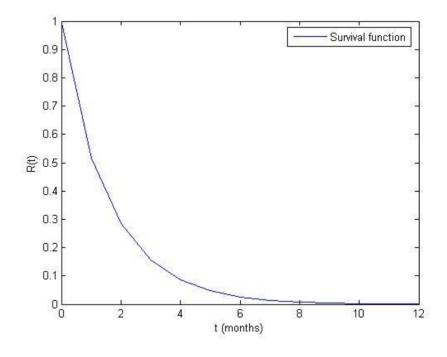
t	30	60	120	150	180	240	300	360
Ехр	0.523	0.281	0.079	0.042	0.022	0.006	0.002	0.000
PH	0.516	0.285	0.086	0.047	0.022	0.008	0.002	0.006



DISPONIBILIDAD: GRÁFICAS COMPARATIVAS

Disponibilidad exponencial

Disponibilidad tipo-fase



FIABILIDAD: GRÁFICAS COMPARATIVAS

Fiabilidad exponencial

Fiabilidad tipo-fase

TABLAS COMPARATIVAS: DISPONIBILIDAD EN INTERVALOS

Disponibilidad en intervalos

t	[0,30]	[0,60]	[0,180]	[0,270]	[60,120]	[90,270]
Ехр	0.530	0.280	0.022	0.003	0.208	0.009
PH	0.517	0.285	0.026	0.071	0.004	0.020

COSTES

COSTES

Se consideran costes por unidad de tiempo:

Coste operativo : C_o

Coste de reparación : C_r

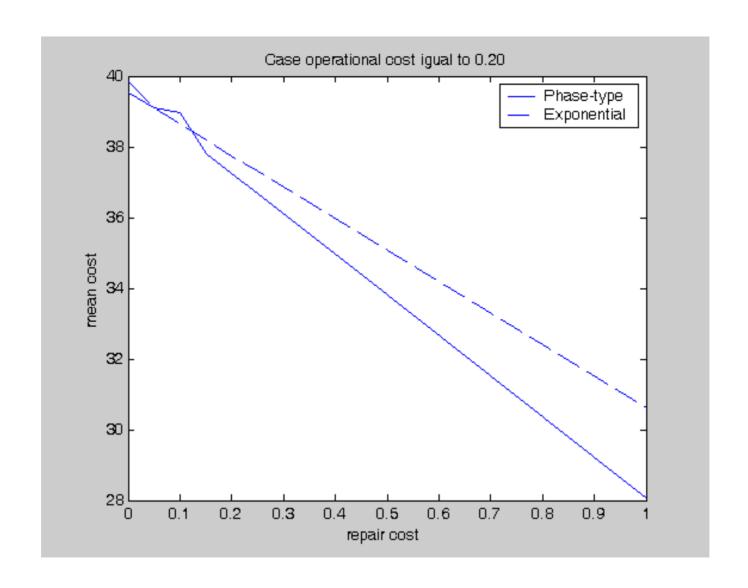
Se calculan los costes medios en el ciclo operativo:

Hasta la ocurrencia del quinto fallo

COSTES: TABLAS COMPARATIVAS

Costes medios $C_0 = 0$

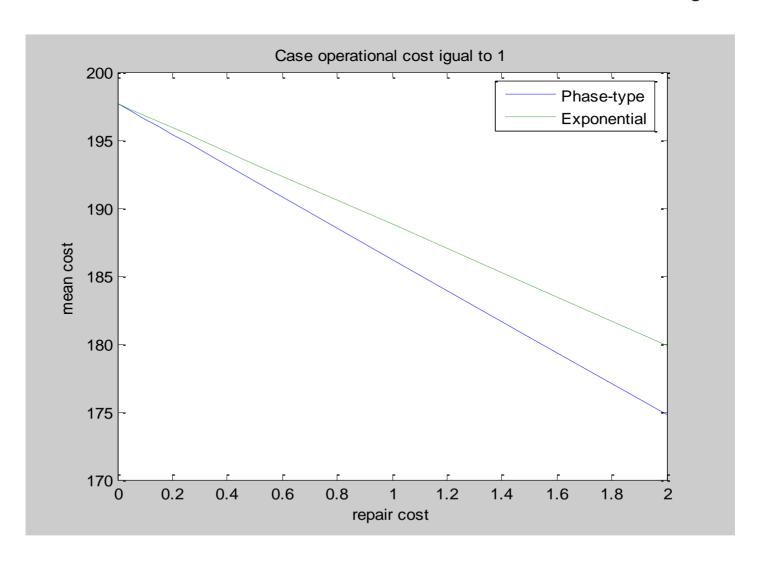
C_r	-0.05	-0.10	-0.15	-0.20	-0.25	-0.50	-1
Ехр	-0.45	-0.90	-1.34	-1.78	-2.23	-4.45	-8.90
PH	-0.44	-1.15	-1.72	-2.30	-2.87	-5.74	-11.5


Costes medios $C_0 = 0.2$

t	-0.05	-0.10	-0.15	-0.20	-0.25	-0.50	-1
Ехр	39.09	38.65	38.20	37.76	37.31	35.01	0.00
PH	38.97	38.39	37.82	37.25	36.67	33.80	0.01

COSTES: GRÁFICAS COMPARATIVAS $C_0 = 0.2$

COSTES: TABLA COMPARATIVAS


Coste medio $C_0 = 1$

C _r	-0.05	-0.10	-0.15	-0.20	-0.25	-0.50	-1
Exp	197.24	196.80	196.35	195.90	195.46	193.24	188.79
PH	197.13	196.56	195.99	195.41	194.84	191.97	186.22

COSTES: GRÁFICAS COMPARATIVAS $C_0 = 1$

Muchas gracias por su atención