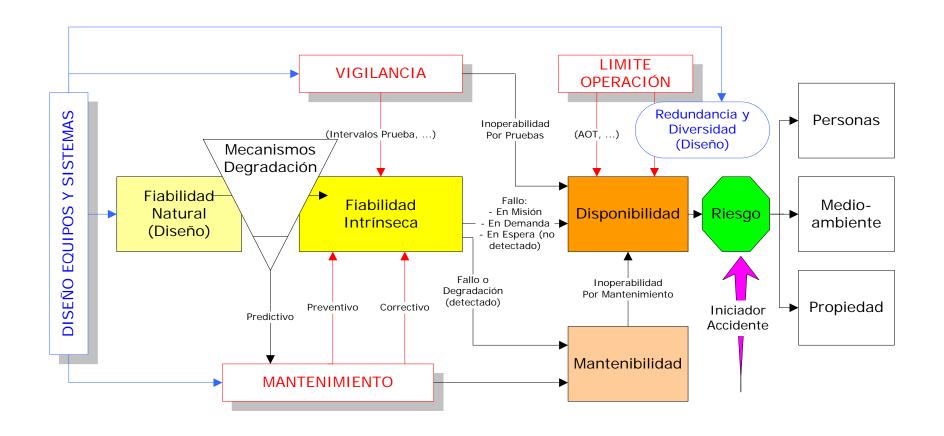
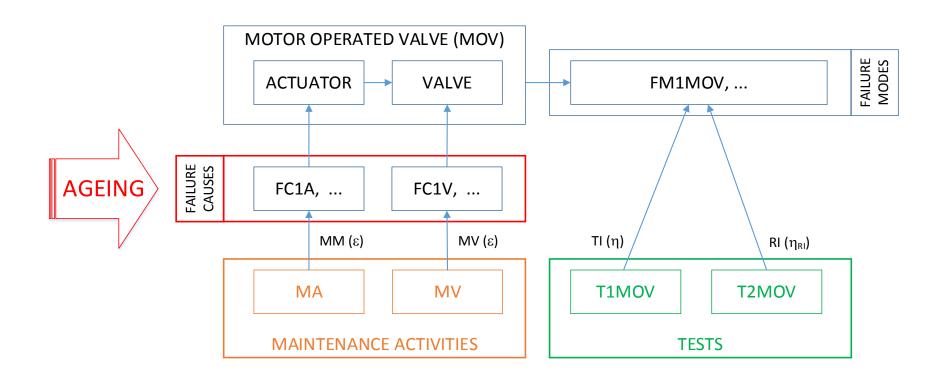


RAMS. IMPACTO DEL ENVEJECIMIENTO Y LA EFECTIVIDAD DEL MANTENIMIENTO

Sebastián Martorell, Pablo Martorell, Isabel Marton, Ana Sánchez


Grupo de Medioambiente y Seguridad Industrial (MEDASEGI)

Departamento de Ingeniería Química y Nuclear Universitat Politècnica de València (UPV)



FUNDAMENTOS

RAM. Reliability, Availability and Maintainability

Ageing, maintenance and testing

Incorporación envejecimiento y efectividad pruebas y mantenimiento en

MODELOS RAMS

Modelo de Fiabilidad.

Incorporación del efecto envejecimiento y mantenimiento

TASA DE FALLOS
INCLUYENDO
ENVEJECIMIENTO Y
PRUEBAS Y
MANTENIMIENTO DE
FORMA EXPLÍCITA

Modelo de Tasa de Fallos

Modelo de Mantenimiento Imperfecto Modelos de fiabilidad dependientes de la edad a nivel de componente

Efecto del envejecimiento y la efectividad del mantenimiento

ENVEJECIMIENTO LINEAL- MODELO PAR

$$\lambda^* = \lambda_{m+1}(t) = \lambda(w_{m+1}(t)) = \lambda_0 + \alpha \cdot (t - \varepsilon \cdot t_m) = \lambda_0 + \alpha \cdot (t - \varepsilon \cdot m \cdot M)$$

ENVEJECIMIENTO LINEAL- MODELO PAS

$$\lambda^* = \lambda_{m+1}(t) = \lambda(w_{m+1}(t)) = \lambda_0 + \alpha \cdot (t - \Delta w_m)$$

$$\Delta w_m = \varepsilon \cdot \sum_{k=0}^{m-1} (1 - \varepsilon)^k \cdot t_{m-k} = \varepsilon \cdot \sum_{k=0}^{m-1} (1 - \varepsilon)^k \cdot (m - k) \cdot M$$

Modelo de Fiabilidad.

Incorporación del efecto envejecimiento y mantenimiento (2)

EDAD - MODELO LINEAL - PAR vs PAS

S. Martorell et al./Reliability Engineering and System Safety 64 (1999) 19-31

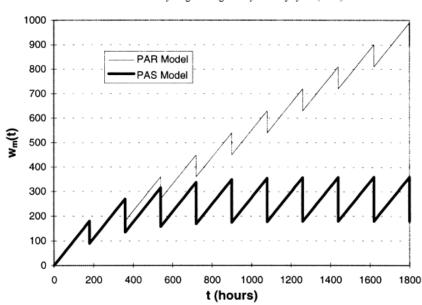


Fig. 2. Age of the component for the PAS and PAR aging models.

TASA FALLOS - MODELO LINEAL - PAR vs PAS

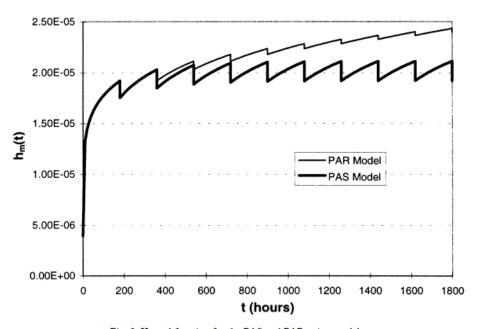


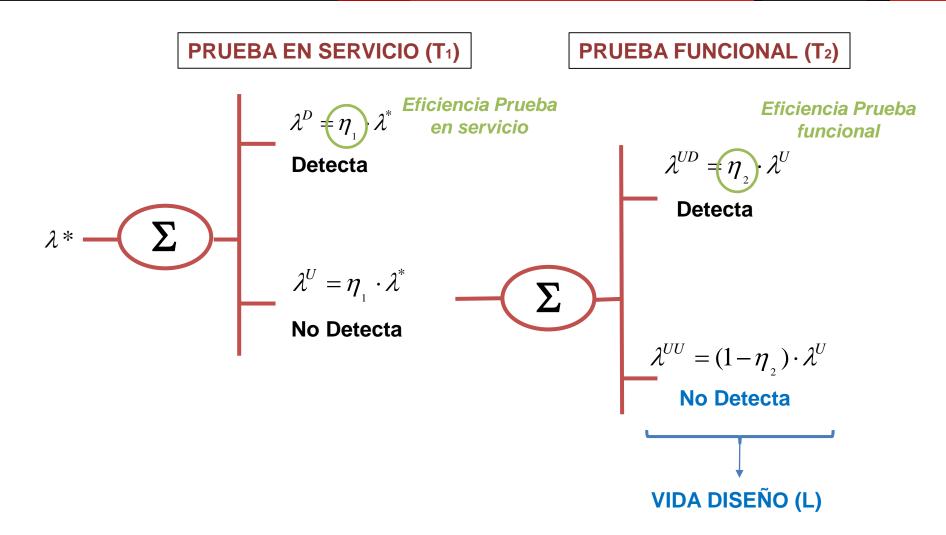
Fig. 3. Hazard function for the PAS and PAR aging models.

Reliability Engineering and System Safety 64 (1999) 19-31

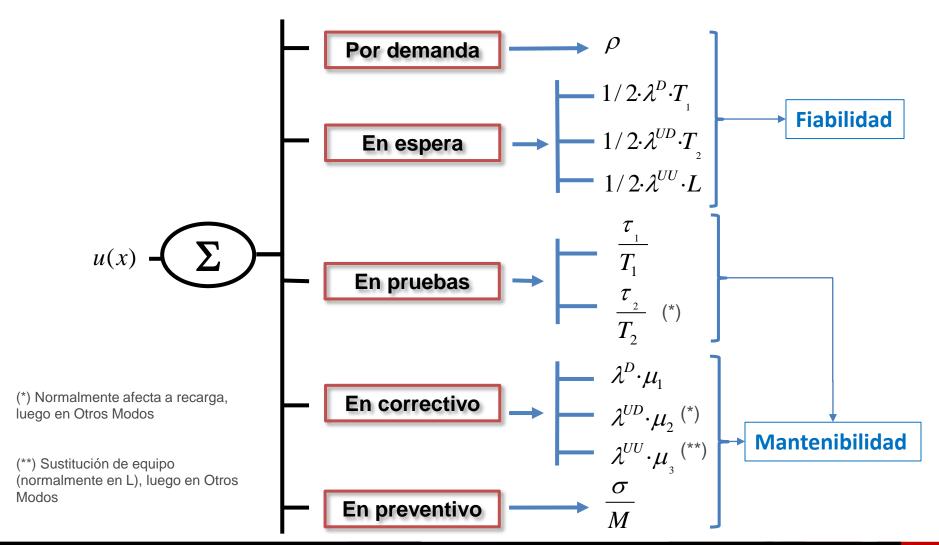
ENGINEERING & SYSTEM SAFETY

Age-dependent reliability model considering effects of maintenance and working conditions

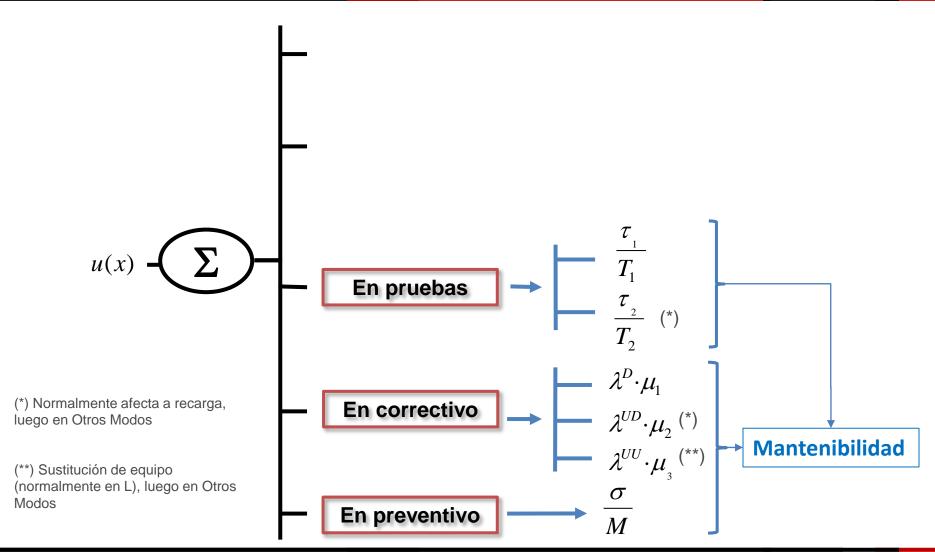
Sebastian Martorell*, Ana Sanchez, Vicente Serradell


Departamento de Ingeniería Química y Nuclear, Universidad Politecnica de Valencia, PO Box 22012, 46071 Valencia, Spain

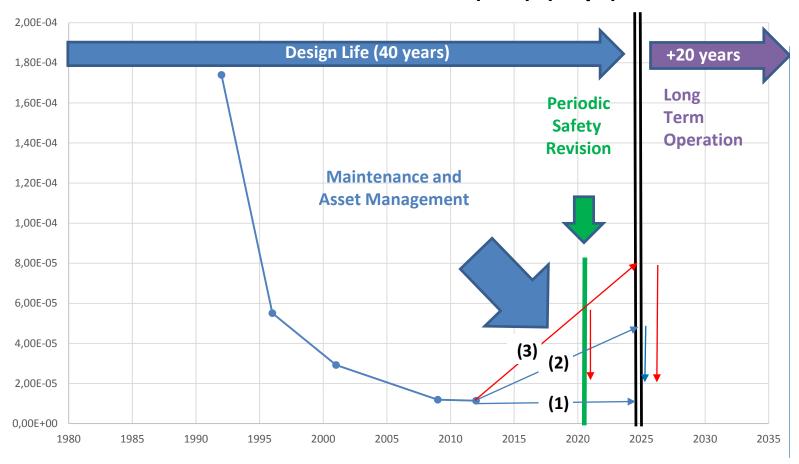
Received 8 April 1998; accepted 20 June 1998



Modelo de Indisponibilidad.


Incorporación del efecto eficacia de las pruebas

Modelo de Indisponibilidad.


Modelo de Mantenibilidad (incluye pruebas)

CASO DE APLICACIÓN

Seguridad CCNN en el largo plazo

Evolution of the Plant Risk (CDF) (r-1 y-1)

Medidas de importancia

La medida de importancia de **Birbaum** (B) de un suceso es independiente de la fiabilidad intrínseca del componente, dependiendo exclusivamente de la estructura del sistema.

 $B_i = R_i^1 - R_i^0$

La medida de Fussel-Vesely (FV) expresa la mejora relativa en el riesgo cuando se supone que el suceso básico asignado a un componente nunca va a ocurrir

$$FV_i = \frac{R - R_i^0}{R} \approx \frac{u_i \cdot B_i}{R}$$

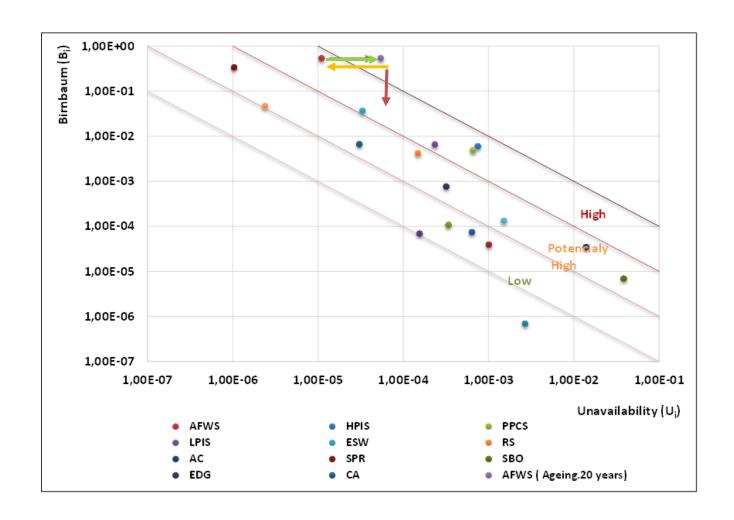
La medida del factor de incremento de riesgo (FIR) determina el impacto que tiene sobre el nivel de riesgo un suceso básico cuando se conoce que se da con certeza

$$RIF_i = \frac{R_i^1}{R} \approx 1 + \frac{B_i}{R}$$

Importancia de Sistemas de Seguridad

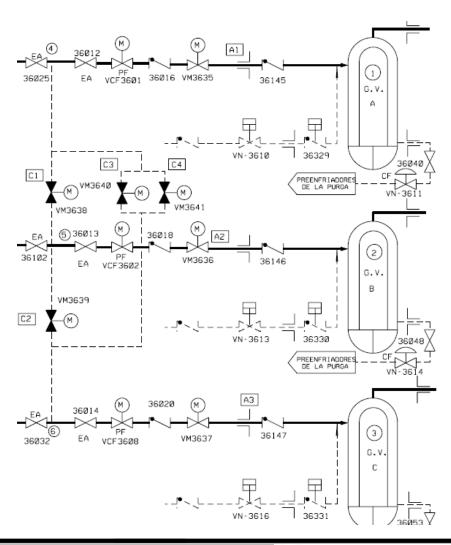
System	Description	FV	RIF	
AFWS	Auxiliary Feed Water System	5,17E-01	47000	
HPIS	High Pressure injection system	3,92E-01	524	
PPCS	Primary pressure control system	2,77E-01	423	
LPIS	Low Pressure injection system	1,34E-01	573	
ESW	Essential service water	1,06E-01	3200	
RS	Essential cooling water	5,41E-02	366	
AC	AC power supply system 120 V.A.C	4,19E-02	3,97	
RPS	Reactor protection system	3,04E-02	29400	
SBO	Alternative DG Station Blackout	2,32E-02	1,58	
EDG	Emergency diesel Generators	2,14E-02	68,1	
CA	AC power supply system 6,9 KV and 400 V.C.A.	1,77E-02	582	
MSS	Main Steam System	1,75E-02	12,6	
DC	DC power supply 125 V.D.C.	9,79E-03	4110	
SGIS	Steam generators isolation system	4,14E-03	7,49	
SSPS	Solid State Protection System	3,45E-03	4,42	
ESAS	Engineered Safeguards Actuation System	3,19E-03	10,4	
RCPI	Reactor coolant pumps up-stream injection	9,34E-04	7,03	
RTS	Reactor trip system	1,61E-04	1,06	

High Risk


Se ha utilizado un APS de nivel 1

Potentially high risk

Low Risk



Representación gráfica de importancias

Sistema de Agua Alimentación Auxiliar (AAA)

Importancia de componentes del AAA

• Priorización de componentes basadas en el riesgo

Medida de importancia FV

	<u> </u>	
Suceso básico	Descripción	FV ₀ (-)
FCV02SBY	Válvula controladora de caudal FCV02 fallo al permanecer abierta	1,151E-01
MDP01FCC	FCC motobombas MDP01/03 fallo al arrancar	3,62E-02
FCV01SBY	Válvula controladora de caudal FCV01 fallo al permanecer abierta	3,28E-02
FCV03SBY	Válvula controladora de caudal FCV03 fallo al permanecer abierta	3,34E-02
TDP01DEM	Turbobomba TDP01 fallo al arrancar	2,11E-02
MOV02DEM	Motoválvula MOV12 fallo al abrir	1,03E-02
SWI01DEM	Interruptor motobomba SWI01 fallo al cerrar	5,89E-03
SWI03DEM	Interruptor motobomba SWI03 fallo al cerrar	6,03E-03
FAN01FCC	FCC ventiladores FAN01/03 fallo al arrancar	1,970E-03
MFC01SBY	Controlador de caudal MFC01 pérdida de función	5.489E-03
MFC03SBY	Controlador de caudal MFC03 pérdida de función	5.489E-03
MOV11SBY	Motoválvula MOV01 fallo al abrir	1,347E-04
MOV13SBY	Motoválvula MOV03 fallo al abrir	1,347E-04
FAN01SBY	Ventilador FAN01 falla al arranque	9,00E-05
FAN02SBY	Ventilador FAN02 falla al arranque	9,002E-05
MOV12SBY	Motoválvula MOV falla a permanecer abierta	3,897E-04
SWIB01FT	Interruptor motobomba BP Fallo a la transferencia del	4,428E-04
	·	

Screening criteria (USNRC, 2011)

17

 $(FV_0 > 0.005)$

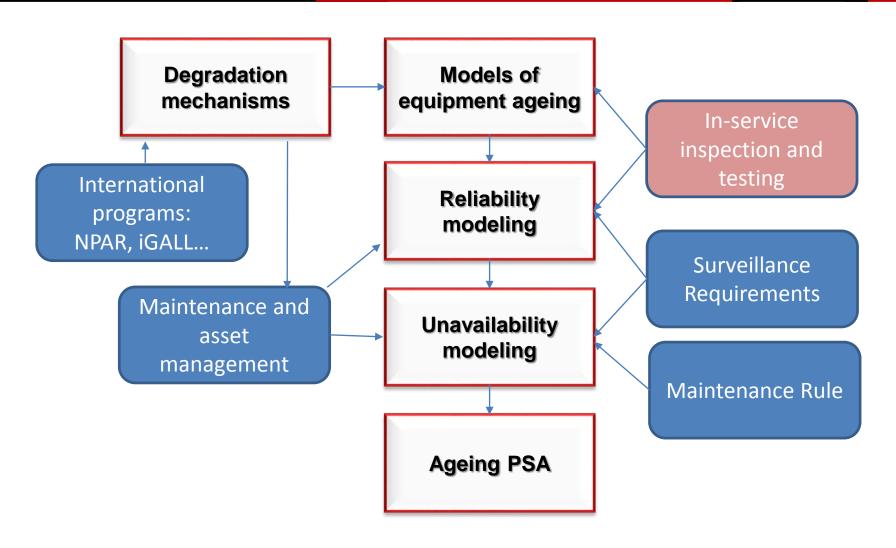
Evolución del APS hasta el APS-E (Ageing PSA)

Fradicional

Modelado RAM tradicional

Los modelos de

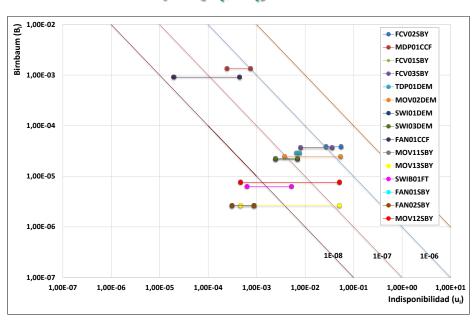
fiabilidad, disponibilidad y mantenibilidad son reformulados a nivel de componente usando los modelos presentados


- Envejecimiento

- Efectividad mantenimiento

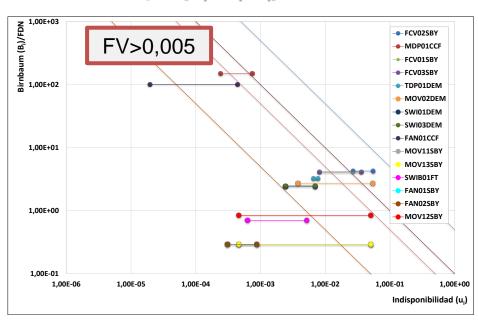
- Eficiencia Pruebas

Esquema de implantación de un APS-E

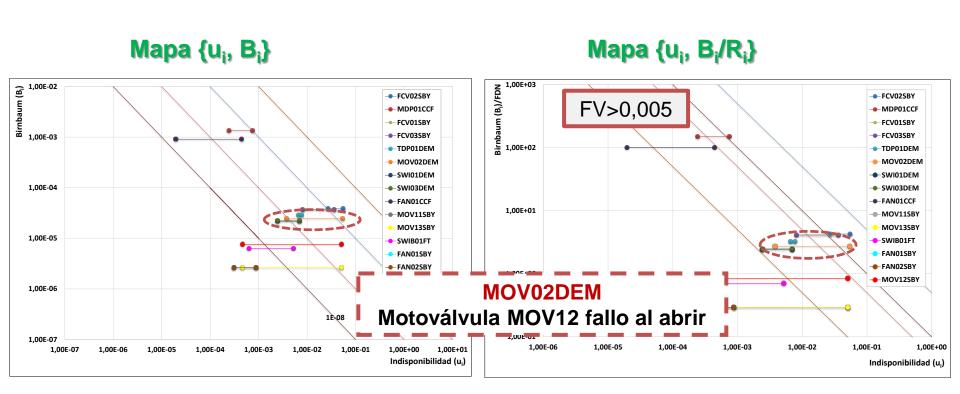

Importancia con envejecimiento

Medida de importancia (FV₀/ FV₁₀)

Suceso básico	Descripción	FV ₀ (-)	FV ₁₀ (-)	FV ₀ / FV ₁₀ 3,022	
FCV02SBY	Válvula controladora de caudal FCV02 fallo al permanecer abierta	1,151E-01	3,478E-01		
MDP01FCC	FCC motobombas MDP01/03 fallo al arrancar	3,62E-02	1,17E-01	3,230	
FCV01SBY	Válvula controladora de caudal FCV01 fallo al permanecer abierta	3,28E-02	2,57E-01	7,836	
FCV03SBY	Válvula controladora de caudal FCV03 fallo al permanecer abierta	3,34E-02	2,61E-01	7,796	
TDP01DEM	Turbobomba TDP01 fallo al arrancar	2,11E-02	2,98E-02	1,411	
MOV02DEM	Motoválvula MOV12 fallo al abrir	1,03E-02	1,68E-01	16,290	
SWI01DEM	Interruptor motobomba SWI01 fallo al cerrar	5,89E-03	2,24E-02	3,812	
SWI03DEM	Interruptor motobomba SWI03 fallo al cerrar	6,03E-03	2,26E-02	3,756	
FAN01FCC	FCC ventiladores FAN01/03 fallo al arrancar	1,970E-03	4,162E-02	21,12	
MOV11SBY	Motoválvula MOV01 fallo al abrir	1,347E-04	3,222E-02	239,212	
MOV13SBY	Motoválvula MOV03 fallo al abrir	1,347E-04	3,222E-02	239,21	
FAN01SBY	Ventilador FAN01 falla al arranque	9,00E-05	5,59E-04	6,212	
FAN02SBY	Ventilador FAN02 falla al arranque	9,002E-05 5,593E-04		6,212	
MOV12SBY	Motoválvula MOV falla a permanecer abierta	3,897E-04	2,900E-02	74,41	
SWIB01FT	Interruptor motobomba BP Fallo a la transferencia del	4,428E-04	2,662E-03	6,01	

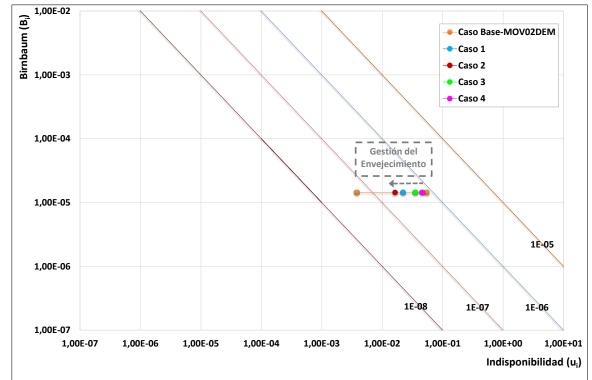

Representación grafica de importancias

Mapa {u_i, B_i}


Líneas iso-Riesgo (R)

Mapa $\{u_i, B_i/R_i\}$

Líneas iso-Fussel- vessel (FV)


Enfoque en componente representativo

Gestión del envejecimiento del componente

Parámetro	Descripción	Caso Base	Caso 1	Caso 2	Caso 3	Caso 4
λ_0 (h^{-1})	Tasa inicial fallos MOV	9.77E-07	9.77E-07	9.77E-07	9.77E-07	9.77E-07
α (h ⁻²)	Factor de envejecimiento	4.11E-10	4.11E-10	4.11E-10	4.11E-10	4.11E-10
M (h)	Intervalo de mantenimiento	13140	4320	13140	13140	4320
ε (–)	Efectividad del mantenimiento	0.6	0.6	0.9	0.6	0.6
T ₁ (h)	Intervalo de pruebas	4320	4320	4320	2160	4320
η ₁ (–)	Eficiencia del intervalo de pruebas	0.6	0.6	0.6	0.6	0.9
T ₂ (h)	Intervalo de prueba funcional	13140	13140	13140	13140	13140
η ₂ (–)	Eficiencia de las pruebas funcionales	1	1	1	1	1

Distintas alternativas de Gestión

Consideraciones finales

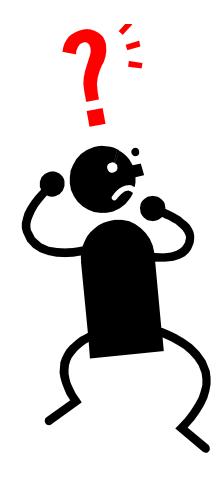
- Esta ponencia presenta una priorización de los componentes basada en el riesgo, con el propósito de identificar aquellos componentes críticos dentro de un sistema de seguridad de una central nuclear utilizando para ellos medidas de importancia tradicionales
- Además se realiza un estudio de sensibilidad para un componente crítico seleccionado con el fin de evaluar cuales son los parámetros más determinantes en la gestión del envejecimiento de dicho componente
- Durante la gestión de vida de la planta en la Operación a Largo Plazo (OLP), la priorización basada en el riesgo se presenta como una herramienta esencial para identificar los sistemas y componentes críticos de la misma
- La adaptación de los programas de pruebas y mantenimiento en función del envejecimiento de los componentes críticos es un requisito fundamental para la correcta gestión de la vida de la planta, con el fin de prepararla para los requerimientos necesarios de la OLP

Trabajo Futuro

- Añadir un mayor número de componentes a la priorización basada en el riesgo
- Uso de datos específicos de planta relativos al envejecimiento de componentes, con el fin de obtener el efecto conjunto del envejecimiento y los programas de pruebas y mantenimiento
- Estudiar el efecto de la introducción de redundancias en los sistemas de seguridad, relativa a la reducción de riesgo funcional/estructural (B_i)
- Incluir en el modelado el efecto de la obsolescencia de equipos

El trabajo enmarcado en el desarrollo del proyecto ENE2013-45540-R (financiado por el Ministerio de Economía y Competitividad) [2014-2016]

"Desarrollo de Requisitos de Vigilancia Avanzados enfocados a la Seguridad y Competitividad de la Operación a Largo Plazo de Centrales Nucleares (APET2020)"



Grupo de Medioambiente y Seguridad Industrial (MEDASEGI)

https://medasegi.webs.upv.es/

Departamento de Ingeniería Química y Nuclear Universitat Politècnica de València

smartore@iqn.upv.es

