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The problem to be solved

@ Electrical components are essential in everyday operations and life
and it is crucial that they do not fail.

@ Reliability: the probability of a system or a component to function
under stated conditions for a specified period of time.

@ Failures can be caused by faults or errors in the components that
comprise the system, or alternatively, the structure that comprises
the component.

@ As a failure occurs, a repair or replacement may take place in order
that the component goes back to functioning as soon as possible.
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@ [ he considered random variables are

T ={t0. e & 2N k=12 ... 4

@ The 926 components are considered to be equal, since the company
states they are built with the same structure.
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e A total of 32 (out of 300) pairs (T, Ty), k.l € {1, ..., 25}, k < I,

presented a correlation coefficient ranging in [0.25,0.7194]. In

addition, 11 (out of 300) pairs had a correlation coefficient which
ranged in [—0.3266, —0.25].

The Tis are correlated

@ A Kolmogorov-Smirnov (K-S) test rejected the equality in
distribution for 52% pairs of the samples, which implies that the

inter-failure times cannot be consider identically distributed nor
independent.

The Tgs are not identically distributed
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Our Data
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The Tis are not exponential




QAEC

ASOCISCION ESPAND_A PARA LA SALIDAC

Example 1: Danish fire insurance losses

Autocorrel#ion Functian (ACF) of Danish Fire Loss Data
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Example 2: Software reliability data
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The MAP

o Versatile Markovian point process (Neuts, 1979).

o Markovian Arrival process or MAP (Lucantoni et al.

1990).

@ Stationary MAPs are dense in the family of stationary point
processes.

Q@ Tractability of the Poisson process.

©@ Dependent inter-failure times.

@ Non-exponential inter-failure times.

e Special cases:

@ Phase-type renewal processes (Erlang and Hyperexponential),

@ Non-renewal processes as the Markov-modulated Poisson process
(MMPP).
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Definition of the 2-state MAP or MAP;

e Continuous Markov chain J(t), state space S = {1,2} and generator
matrix D.

e Initial state iy € S given by an initial probability a= (a,1 — a).

@ At the end of a sojourn time in state /, exponentially distributed
with parameter \; > 0, two possible transitions:

Q@ With probability pjj: the MAP enters state j € § and a single arrival
occurs.
@ With probability pjjo the MAP enters state j without arrivals, j # i

@ The MAP, process is characterized by M = {a, A\, Py, P1}, where
A= ()\1, )\2), and

Py — 0  p12o | p, — (P11 P
p21o O P11 P221
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Transition diagram: MAP,
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Alternative characterization

@ The MAP> process can also be characterized by the set
M = {(I, Do, Dl}

@ Rate matrices
DO_(X y)’ Dl_(w —x—y—w)’
zZ U % —Z—U—V

X = _Ala V= Alplz{], W = )\1;0111:

where

Z= Aopo10. U= —N2, V= Aopoi1.

@ D = Dy + Dy is the generator of J(t), with stationary probability
vector denoted by 7.
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Some Properties

@ [he stationary probability vector ¢ is calculated as

PP = o,

where P* is the transition probability matrix, given by
P* = (—Dg)_lDl.

@ The CDF and moments of { Tk }x=1.2... 42 are given by,

)

Fr.(t)=1-— o et

e.
Hk.m = E (TF) = m!ak (—Dg)_me,

where, oy = a(P*)k_l and Ty ~ PH{a,Dy}.
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Some properties

Concerning the counting process {N(t), t > 0}

@ [he probability of n failures at time t is given by,
P(N(t) =n| N(O)=0)=aP(n,t)e,

where the probability of n failures in the interval (0. t] is given by
the matrix P(n, t).

@ The expected number of failures at time t, E (N(t) | N(0) = 0), is
computed from,
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Canonical Representation

Rodriguez et al. (2014) defined the canonic representation of the
non-stationary MAP> in terms of the eigenvalue different from zero of

P~*, defined ~. So, if v > 0, then

- ~ ~ ~ X Y ~ —X =y 0
ac:(oz,l—oz), DO_(O é) Dl_( vy E'V)

On the contrary, if v < 0, the canonical representation is given by

-~ . 0 —X—y
a—(a,l—a), Do—( ) Dl—(ﬁv v ),
where 1 < X <0, X+ y < u—+v

The stationary version of the MAP> is obtained by setting o = ¢.
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Non-Stationary vs. Stationary version

@ In the stationary version, the probability vector is the stationary
probability distribution ¢, we have that

P(X,=1)= ¢(i),
— T are identically distributed
T ~ PH{¢.Do}.

@ In the non-stationary version, the probability vector is arbitrary, «,
and

P(X;=1i)= {a(P*)U_l)] (i), forl<j<n.
— T, are not identically distributed.
Ty ~ PH{ca, Do} .
In particular,

im a(P*)" = ¢.

n—oo
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Statistical Estimation

A number of articles have considered statistical estimation for the MAPs,
but always under the assumption that the process is in its stationary
version, for example:

@ Breuer (2002), Klemm et al. (2003) and Okamura et al. (2009),
studied the inference for the MAP via the EM
(Expectation-Maximization) algorithm.

@ Bayesian inference for the MAP, has been studied by Ramirez-Cobo
et al. (2013), where different algorithms are proposed.
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Data & parameters of the model

We have N real sequences of the operational times, t(), ... t(V) as
observations, where

) = (tf), SR t,ﬁ”) ,
NSRS s

@ (t{”, 2, t,ﬁf)) ,

(VN (ﬂm)’ téN), L tgf:)) ,

n; denotes the size of the sample t\), for i = 1. ..., N.
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Data & parameters of the model

@ We assume that the NN components are identical and the sequences

of operational times t(1), . ... tV) are independent among them.

@ The goal is to estimate the model parameters {a. D. 5{} e
{a,%.y.0.7}, from the sample {t(1) t@) . (M)}

@ Unlike classical model assumptions, we cannot assume that the
random variables { T }x>1 are uncorrelated, and then, they cannot
be considered independent. Also, the random variables { Ty }x>1 are
not necessarily identically distributed.
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Moment Matching method

We define a moment matching estimation approach where the population
moments /i , are matched by their empirical counterparts 7z,

computed as
N
E ("
fk.m = N ; (tk ) :

This leads to solve the nonlinear system of equations defined by

En N

Hl,m (asxa _ya ’Ua V) — f-Ll,ma m = 13 23 33

En N

;‘Lk‘]_ (O{'}X'}y'} U',‘ v) — ;‘Lk>1" k — 2'," 3'
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Moment Matching method

The previous system of equations may not have a feasible solution,
therefore, ,we follow Carrizosa and Ramirez (2013), and seek instead the

L

rmr'n O, (Ei, 50, 51)
s.t. Xx.0<0,
(P) ¢ y,v =0,
—%—§ >0
—u—v >0
0<a<l.




Moment Matching method

where the objective function is given by,

. 2 o 2
. n (a,Do, D1) —h ra (Ei, Dy. 91) g
5. (a, Do, Dl) = 7 _ + .
n ”
o 2 o 2
r3 (Ei, Do. 91) — I 112 (Ei, Do. D1) — 12
-+ — + -
r3 H2
o 2
.Ma (aa DD: D].) _.Hg
+ -
H3

T is a penalty parameter that needs to be tuned, but setting 7 =1
performs well in practice.



QAEC

SPAND_A PARA LA SALIDAL

Solution to (P)

@ The optimization problem (P) is solved by using the local search
MATLAB's routine fmincon (Optimization toolbox).

@ We perform a multistart approach (200 different starting points
randomly selected are used) and keep the solution with minimum
objective function 9.
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Select a canonical form

o Given the sample t(Y), .. .. tt"N) problem (P) needs to be solved

twice, one per each of the two canonical representations.

@ [he estimated parameters under the model with highest
log-likelihood are selected, where the log-likelihood of the sample is

given by

N
log F(t®.... . tM| Dy, Dy) = "log £(t7|Do. Dy ).
=1
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[llustration with a real data set

We have the failure times of N = 926 electrical components, the length of
the failure times is different for each component.

Components with less than 3 observations will not be considered. And
samples of length larger than 30 will be considered.

The sample moments are given by

(BT, 7ii2, i3, Fai. Fa1) = (79.226,7.478x10°%,7.2911x10%, 69.0582, 67.5977).

First canonical form estimate;

A1 ~y  [—0.2304  0.1345 ., [0.1049 0
& = (0.4608,0.5392), Do = ( 0 —0.0104) - D= (0.006? 0.003?)

with estimated moments given by
(11, Jit2, jiis, Jia1, fis1) = (78.8950,7.535x10°,7.2633x 10%, 69.0864, 67.5712),

and objective function equal to 01 = 9.0324 x 10~>.
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[llustration with a real data set

Second canonical form estimate:

A2 ~y  [(—0.0104  0.0104 Ay 0 0
& = (0.8207,0.1793), Do _( 0 16.53?8)? Di = (11.?651 4.7?27)’

with estimated moments given by
(fi11. fi12, i3, fia1, fia1) = (78.7930,7.5583x10°,7.2513%10°, 68.3119, 68.3119),

and objective function 62 = 4.0324 x 10~%.
The log-likelihoods are

log f(tM), ... tM|DL, D) = —5.3790 x 10,

log F(tM), ... tM| D2, D?) = —5.7335 x 10*,

which provides evidence in favor of the estimate {A?. EA%? f)ll}
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Estimated CDF vs. Empirical CDF
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Counting process descriptors

N | NO=0)

Probabilities P(N(t) = n) for n € N and  Expected number of failures at time t.
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Conclusions & Extensions

@ The failure times are considered to be dependent and not identically
distributed, an assumption which is realistic in practice.

@ The canonical representation of the non-stationary version of the
MAP> is considered to model the failure times.

@ We present a moments matching method estimation procedure to fit
the non-stationary second-order MAP to sequences of operational
times of N electrical components that are structurally equal.

@ From the estimated parameters of the model, a number of key
performance measures regarding the counting process, as the
probability of N failures or the expected number of failures at time
t, are inferred.
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