Ciclo de vida de la medida en el desarrollo de componentes electrónicos para la automoción

Tres Cantos – Madrid 20 de Mayo 2016

Xavier Secall
Laboratory Manager
Electrical Engineering Europe & Africa
xsecall@lear.com
www.lear.com

This is Lear

Seating and Electrical Capabilities

Seating

- Strong Market Position -- One of two independent seat suppliers with global scale and complete component capabilities; 2014 sales of \$13.3 billion
- Key Capabilities -- Complete automotive seat systems, seat covers (including cut & sew, fabric and leather), mechanisms & structures and foam

Electrical

- Strong Market Position -- One of four suppliers with global capability in both traditional and high-power electrical distribution systems; 2014 sales of \$4.4 billion
- Key Capabilities -- Traditional electrical distribution systems, emerging high-power systems and related components, including connectors, smart junction boxes and battery chargers

Global Capabilities with Low-Cost Footprint

ARGENTINA
AUSTRALIA
CANADA
FRANCE
GERMANY
ITALY
JAPAN
NETHERLANDS
SINGAPORE
SOUTH KOREA
SPAIN
SWEDEN
UNITED KINGDOM
UNITED STATES

BRAZIL CHINA CZECH REPUBLIC **HONDURAS** HUNGARY INDIA **INDONESIA** MALAYSIA **MEXICO** MOLDOVA MOROCCO **PHILIPPINES** POLAND ROMANIA RUSSIA SLOVAK REPUBLIC SOUTH AFRICA THAILAND TUNISIA VIETNAM

We Serve All of the World's Major Automakers

electrical+electronics technologies

POWERING IDEAS THAT DELIVER™

By providing our customers the best ideas, industry-leading innovation and breakthrough technology from the best go-to team in the industry, Lear's Electrical Power Management Systems is able to combine performance, global resources and systems-level knowledge to meet our customers' high standards with uncompromising value. Lear's Electrical + Electronics product portfolio includes:

ELECTRICAL DISTRIBUTION SYSTEMS

- Wire Harnesses
- Smart Execution Process™
- Alternative Wire Solutions
- · Global, low-cost footprint

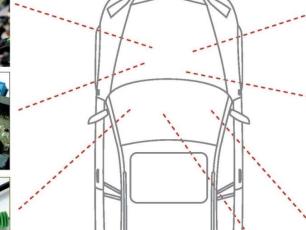
BODY ELECTRONICS

- · Advanced, highly integrated core body controllers
 - Gateway Modules
 - Door Zone Modules Seat Controls
- Battery Monitoring Systems

TERMINALS & CONNECTORS

- Full T&C Systems · High Power T&C Systems
- High Voltage T&C Systems
 - · Pin Headers
 - Fuse & Pre-Fuse Boxes · Bus Bars

WIRELESS TECHNOLOGY


- Passive Entry Systems
- · Remote Keyless Entry

HIGH POWER

- Charging Systems (included wireless)
- · High Power Distribution Systems
- · High Power Energy Management

JUNCTION BOX

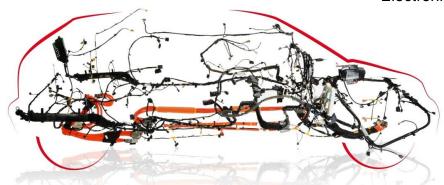
- Passive Junction Boxes
- Smart Junction Boxes
- Solid State Junction Boxes

AUDIO

- 2 22 Channel Audio Amplifiers
- · Sound system integration and tuning expertise

LIGHTING

- · Interior LED Lighting Control
- · Exterior Lighting Control
- Adaptive FrontLight Systems
- · LED Signal
- LED Matrix


Lear Electrical Innovation

Efficiency

- Copper-Clad Steel Wire
- Traditional and High-Power
- Aluminum Terminals
- Aluminum Wire

- Solid State Smart Junction Box[™]
- Most Highly Integrated Body Control Module
- Custom Terminals & Connectors
- Highest Power to Size Ratio Terminals

- Aluminum Printed Circuit Board
- Conductive Plastics
- 96% Efficient EV Charging
- Industry-Leading Size and Weight Power Electronics

Connectivity

- 2-way Remote Keyless Entry
- Advanced Passive Entry / Start
- In-Vehicle Wireless Connectivity
- EV Charging and Grid Communication

First-to-Market Innovations

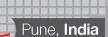
Advanced Features

- LED Matrix Beam Control
- Seat Massage Contour Module
- · Wireless EV Charging
- Ambient Lighting
- Audio Amplifiers and Controls

Process

- High Output T&C Tooling
- Miniaturized Terminal Crimping
- Modular Frameless Power Distribution Box

Laboratory Capabilities Overview



Kronach / Remscheid, **Germany**Munich, **Germany**

Grugliasco, **Italy**

Gyeongju / Bupyeong, **Korea**

Cebu, Philippines

Shanghai, China

Valls, Spain 🕻

Southfield, USA / Kronach - Remscheid, Germany / Valls, Spain / Cebu, Philippines / Shanghai, China

Seating

Southfield, USA / Munich, Germany / Grugliasco, Italy / Pune, India / Shanghai, China / Gyeongju - Bupyeong, Korea / Caçapava, Brazil

Validation Laboratory Capabilities

Validation Laboratory - Capabilities

Electro-Magnetic Compatibility

ISO 17025 Accredited Lab ENAC 1082/LE2133

8.800 hours test / year

Radiated emissions
Conducted emissions
Radiated immunity
Conducted immunity
ISO pulses
ESD

Validation Laboratory - Capabilities

Environmental and Mechanical

ISO 17025 Accredited Lab ENAC 1082/LE2133

202.000 hours test / year

Dewing
High / Low temperature
Thermal shock
Temperature Cycle
Temperature/Humidity cyclic
Damp heat steady state
Power Temperature Cycling
Dust ingress protection
Water ingress protection
Salt fog spray
Mechanical shock
Random wide band vibration

Sinus Vibration

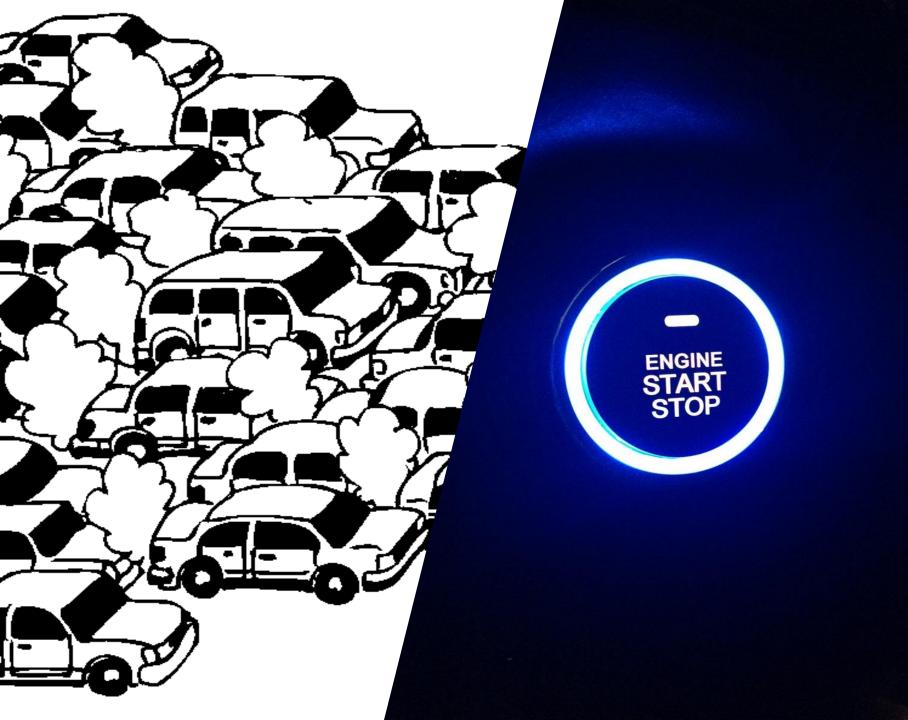
Resonances investigation

Engineering, Test and Validation



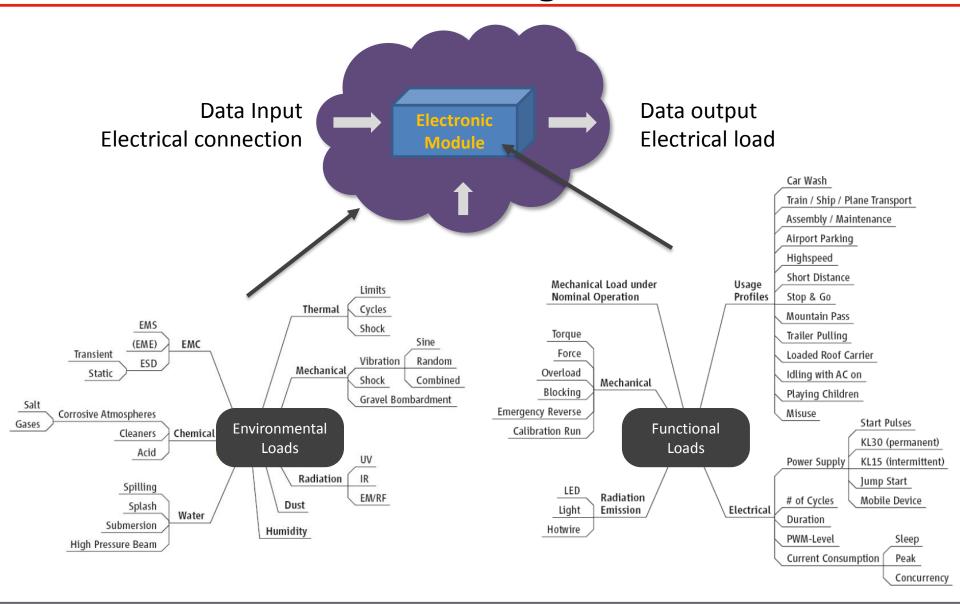
"V" Model in Automotive Industry

The same engineering workspace environment from design to physical testing



Battery Monitoring System (BMS)

to help maintain overall prormance and life of the battery while helping with fuel economy million parts



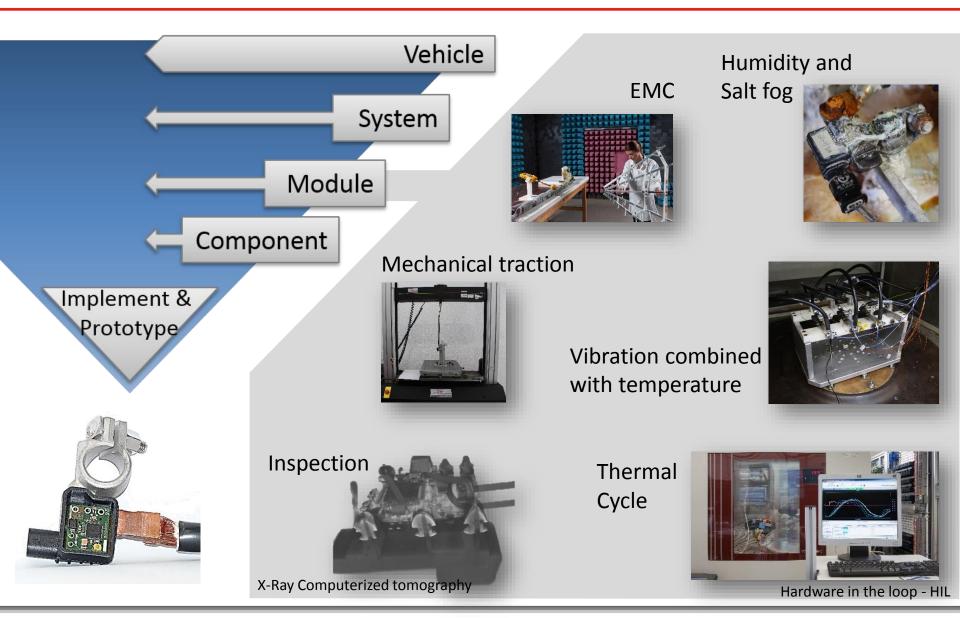
Stress factors and loads during service life

Development of Ford's latest F-Series Super Duty pickup truck included grue Service life the vehicle to its absolute limits

operating hours 8.000 h

mileage 300.000 km

Requirements VERIFICATION



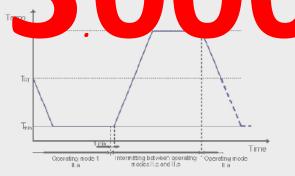
Measure and VALIDATION Test

Example of VALIDATION Life Test

Service life test: Power Thermal Cycle Endurance (PTCE) – LV124: ISO 60068-2-14

11.3 L-03 Life test - temperature cycle test

11.3.1 Air


This test simulates in act form the thermal temperature changes ccur durina vehicle The test serves to veri quality and relial the c nent wi faults that occur due to them chanical load. ng and ing in s joints, in bor adhesive joints and we as in s

11.3.2 109

The test is carried out acc. to DIN EN 60068-2-14 with the following parameters:

Table 85: Test parameters L-03 Life test - temperature cycle test

DUT operating	Intermitting operating mode II.c and operating mode II.a acc. to				
mode	Figure 38.				
Temperature profile	Acc. to Figure 38				
Minimum test temperature	T _{min}				
Maximum test temperature	T _{max}				
	4 ℃/min				
Temperature	If the temperature gradient cannot be produced by the testing				
gradient	device, it can be reduced to values up to a minimum of 2 °C/min in coordination with the purchaser.				
Holding time at	15 min after the compensat has achieved the condition at which it				
T _{min} and T _{max}	s the terr				
Number of cycles	To culated to Se 12, rid to ecifi the Cor ent Per ance S cal				
Number of DUT					

12.4 Calculation models for the life test 'temperature cycle test'

12.4.1 Coffin-Manson model

The calculation of the test duration for the temperature cycle test life test is based on the average temperature changes of the component in the field ΔT_{Feld} and the number of temperature cycles during service life in the field $N_{\text{Temp2WklenFeld}}$.

Where:

Aceleration factor of the Coffin-Manson model

ΔT_{leat}

ΔT_{leat}

ΔT_{leat}

ΔT_{leat}

c

Acceleration factor of the Coffin-Manson model

Acceleration factor of the Coffin-M

The total number of test cycles is calculated acc. to

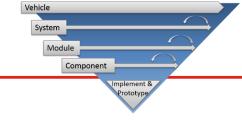
$$N_{Pr\hat{u}\hat{l}} = \frac{N_{TempZyklerFeld}}{A_{CM}}$$
 (4)

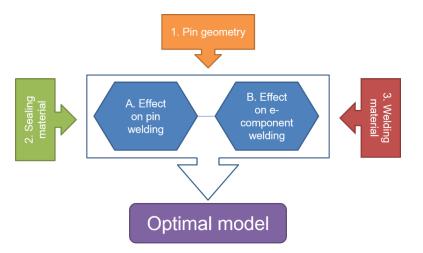
Where:

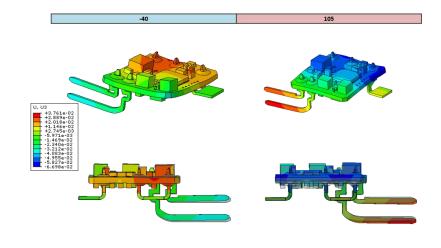
N_{Prof} Required number of test cycles

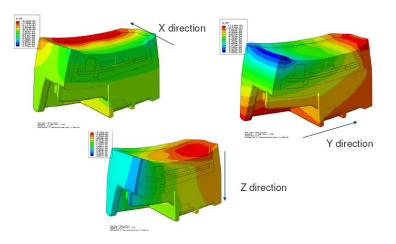
NTempZytenFeld Number of temperature cycles during service life in the field Acceleration factor of the Coffin-Manson model acc. to equation (3)

test hours








Power Thermal Cycle Endurance Test

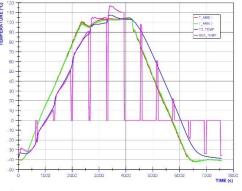
Simulation: FEA analysis. Study of variables and effects

DOUBLE-S-PIN	e-component welding			
	SnPb37		SnAg	
Ероху	Limit	5.7%	Limit	4.2%
Silicone	ОК	1.5%	ОК	1.2%

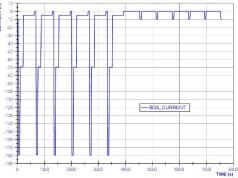
Criteria according to experience correlation FEA results/lab. Tests on pin weld:

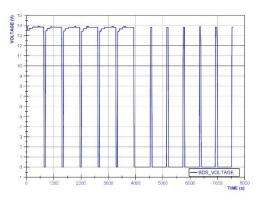
>7% NOK 2-7% Limit

<2% OK


Power Thermal Cycle Endurance Test

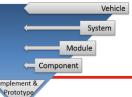
Vehicle System Module Component

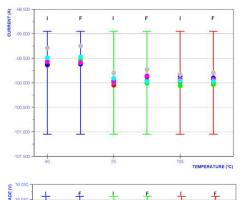

Test set-up

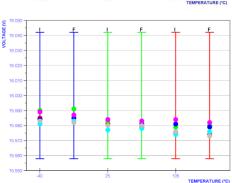

Temperature (°C)

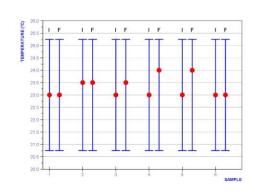
Current (A)

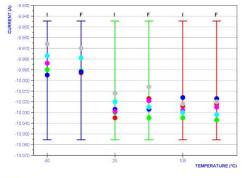
Voltage (V)

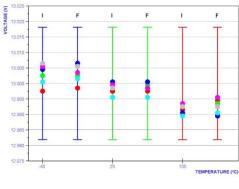


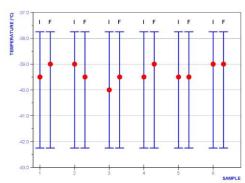


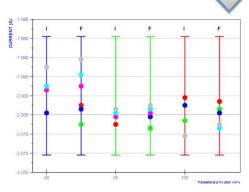


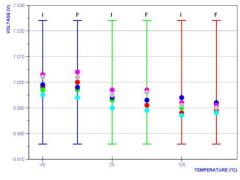


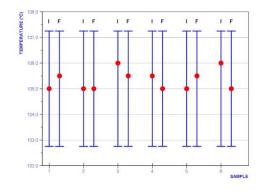

Power Thermal Cycle Endurance Test











Requirements

Car integration

Test & Measure

Gracias por su atención

